The <i>p</i>-norm of circulant matrices via Fourier analysis

نویسندگان

چکیده

Abstract A recent work derived expressions for the induced p -norm of a special class circulant matrices ( n , b ) ∈ ℝ × with diagonal entries equal to and off-diagonal ≥ 0. We provide shorter proofs all results therein using Fourier analysis. The key observation is that matrix diagonalized by DFT matrix. comprise an exact expression ǁ 1 ≤ ∞, where = ), 0 2 − 0; other -norms &lt; upper lower bounds are derived.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Fourier Transform, Circulant Matrices, and the Fast Fourier Transform

Suppose we have a function s(t) that measures the sound level at time t of an analog audio signal. We assume that s(t) is piecewise-continuous and of finite duration: s(t) = 0 when t is outside some interval a ≤ t ≤ b. Make a change of variable x = (t− a)/(b− a) and set f(x) = s(t). Then 0 ≤ x ≤ 1 when a ≤ t ≤ b, and f(x) is a piecewise continuous function of x. We convert f(x) into a digital s...

متن کامل

Computation of the q-th roots of circulant matrices

In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.

متن کامل

The upper bound estimation for the spectral norm of r-circulant and symmetric r-circulant matrices with the Padovan sequence

In this paper, we gives an upper bound estimation of the spectral norm for matrices A and B such that the entries in the first row of n×n r-circulant matrix A = Circr(a1, a2, . . . , an) and n×n symmetric r-circulant matrix B = SCircr(a1, a2, . . . , an) are ai = Pi or ai = P 2 i or ai = Pi−1 or ai = P 2 i−1, where {Pi}i=0 is Padovan sequence. At the last section, some illustrative numerical ex...

متن کامل

Application of Circulant Matrices

A k x k matrix A = [aU lover a field F is called circulant if aij = a (j-i) mod k' A [2k ,k l linear code over F = GF (q) is called double-circulant if it is generated by a matrix of the fonn [I A l, where A is a circulant matrix. In this work we ftrst employ the Fourier transform techJ nique to analyze and construct se:veral families of double-circulant codes. The minimum distance of the resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Concrete Operators

سال: 2022

ISSN: ['2299-3282']

DOI: https://doi.org/10.1515/conop-2021-0123